Robust and Minimum Norm Partial Quadratic Eigenvalue Assignment in Vibrating Systems: A New Optimization Approach
نویسندگان
چکیده
The partial quadratic eigenvalue assignment problem (PQEVAP) concerns reassigning a few undesired eigenvalues of a quadratic matrix pencil to suitably chosen locations and keeping the other large number of eigenvalues and eigenvectors unchanged (no spill-over). The problem naturally arises in controlling dangerous vibrations in structures by means of active feedback control design. For practical viability, the design must be robust, which requires that the norms of the feedback matrices and the condition number of the closedloop eigenvectors are as small as possible. The problem of computing feedback matrices that satisfy the above two practical requirements is known as the Robust Partial Quadratic Eigenvalue Assignment Problem (RPQEVAP). In this paper, we formulate the RPQEVAP as an unconstrained minimization problem with the cost function involving the condition number of the closed-loop eigenvector matrix and two feedback norms. Since only a small number of eigenvalues of the open-loop quadratic pencil are computable using the stateof-the-art matrix computational techniques and/or measurable in a vibration laboratory, it is imperative that the problem is solved using these small number of eigenvalues and the corresponding eigenvectors. To this end, a class of the feedback matrices are obtained in parametric form, parameterized by a single parametric matrix, and the cost function and the required gradient formulas for the optimization problem are developed in terms of the small number of eigenvalues that are reassigned and their corresponding eigenvectors. The problem is solved directly in quadratic setting without transforming it to a standard first-order control problem and most importantly, the significant ”no spill-over property” of the closed-loop eigenvalues and eigenvectors is established by means of a mathematical result. These features make the proposed method practically applicable even for very large structures. Results on numerical experiments show that the proposed method considerably reduces both feedback norms and the sensitivity of the closed-loop eigenvalues. A study on robustness of the system responses of the method under small perturbations show that the responses of the perturbed closed-loop system are compatible with perturbations. ∗School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China E-mail: [email protected]. This author’s research was partially supported by NSFC Grant 10601043, NCETXMU, and SRF for ROCS, SEM. †Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA E-mail: [email protected]. The research of this author was supported by NSF Grant #DMS-0505784. ‡School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China E-mail: [email protected].
منابع مشابه
An Optimization Approach for Minimum Norm and Robust Partial Quadratic Eigenvalue Assignment Problems for Vibrating Structures
The Partial Quadratic Eigenvalue Assignment Problem (PQEVAP) concerns the reassignment of a small number of undesirable eigenvalues of a quadratic matrix pencil, while leaving the remaining large number of eigenvalues and the corresponding eigenvectors unchanged. The problem arises in controlling undesirable resonance in vibrating structures and in stabilizing control systems. The solution of t...
متن کاملMinimum Norm Partial Quadratic Eigenvalue Assignment with Time Delay in Vibrating Structures Using the Receptance and the System Matrices
The partial quadratic eigenvalue assignment problem (PQEAP) is to compute a pair of feedback matrices such that a small number of unwanted eigenvalues in a structure are reassigned to suitable locations while keeping the remaining large number of eigenvalues and the associated eigenvectors unchanged. The problem arises in active vibration control of structures. For real-life applications, it is...
متن کاملPartial Eigenvalue Assignment in Discrete-time Descriptor Systems via Derivative State Feedback
A method for solving the descriptor discrete-time linear system is focused. For easily, it is converted to a standard discrete-time linear system by the definition of a derivative state feedback. Then partial eigenvalue assignment is used for obtaining state feedback and solving the standard system. In partial eigenvalue assignment, just a part of the open loop spectrum of the standard linear s...
متن کاملA NEW APPROACH TO THE SOLUTION OF SENSITIVITY MINIMIZATION IN LINEAR STATE FEEDBACK CONTROL
In this paper, it is shown that by exploiting the explicit parametric state feedback solution, it is feasible to obtain the ultimate solution to minimum sensitivity problem. A numerical algorithm for construction of a robust state feedback in eigenvalue assignment problem for a controllable linear system is presented. By using a generalized parametric vector companion form, the problem of eigen...
متن کاملQuadratic partial eigenvalue assignment problem with time delay for active vibration control
Partial pole assignment in active vibration control refers to reassigning a small set of unwanted eigenvalues of the quadratic eigenvalue problem (QEP) associated with the second order system of a vibrating structure, by using feedback control force, to suitably chosen location without altering the remaining large number of eigenvalues and eigenvectors. There are several challenges of solving t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009